
8 The Delphi Magazine Issue 27

Delusions Of Grandeur
by Julian Bucknall

Perhaps you’ve never thought
about it. Well, it’s about time

you did: it’s a big wide multilingual
world out there. What am I talking
about? In this particular case, how
to compare or sort strings, that’s
what. A topic that’s turns out to be
like peeling an onion, there’s
always another layer underneath.

A Different Point Of View
A quick test to get us going: in what
alphabetic order would you put
the words rascal, résumé, and
ripple? Most English-speaking
people, including myself, would
put them in the order shown,
which is arguably the standard
way (at least that’s the way my dic-
tionary does it).

So, now a more difficult test, at
least to do off the top of your head.
Suppose you wrote a sorting rou-
tine which sorted string arrays and
you used the Delphi < or > string
operator to compare two strings as
part of that sorting algorithm.
What would the final order be if
you fed it an array containing our
three test words? And if you were
clever and used either the Compar-
eStr or AnsiCompareStr routines
from SysUtils instead?

I wrote a small program (which I
won’t reproduce here) that did
exactly that: sorting our three test
strings with the three methods.
The results were interesting. The
standard (< or >) operator sorted
the strings in the order rascal,
ripple, résumé, as did the Compar-
eStr routine. The AnsiCompareStr
routine got it ‘right.’

The reason for the difference lies
in the implementation of the three
routines. The first two rely on a
binary comparison: take each
character in turn from each string,
from the first to the last of the
shorter of the two strings, typecast
it as a byte and then compare these
bytes. Once you get an inequality
between the bytes you have an
inequality between the original
strings. If you don’t have an

inequality and the strings are equal
in length, you have equal strings.
Pretty simple, huh? The other rou-
tine uses the Windows API routine
CompareString. CompareString uses
the ‘meaning’ behind each charac-
ter to do its comparison: ie, é
should be sorted between e and f.

Another interesting thing hap-
pened when I wrote my little test
program. I don’t know about you,
but when I write little test pro-
grams to check an algorithm or
idea, I use console apps. I can’t be
bothered dropping components
on forms and setting OnClick event
handlers and label captions and
the like. I go straight to the good
old WriteLn routine in a console
app. Except... when I ran the app,
the word résumé appeared with
the é characters replaced by the
Greek theta character. The first
time this happens it can be a little
disconcerting.

And so my original simple
experiment starts getting a little
wild. Where did those thetas
(thetae?) come from? The answer
is that Windows and the DOS box
(or the console, if you like) use dif-
ferent code pages to display their
characters.

To Step Aside
The term code page is perhaps a
little hard to relate to, it’s probably
better to use the term character set.
A character set is a set of encod-
ings of numeric values to represent
specific characters. In our discus-
sion here we’ll be talking about
byte encodings; when a word value
is used instead it’s called Unicode.
Hence, for example, the character
‘A’ is represented by the value 65
($41), ‘B’ by 66 ($42), ‘0’ by 48 ($30),
etc.

Wait, I hear you cry, those are
just ASCII values, what’s so special
about that? Correct, but standard
ASCII only specifies a 7-bit encod-
ing of characters, ie, 128 charac-
ters in all. A byte encoding can
have 256 values, therefore ASCII is

‘missing’ 128 characters. When
Microsoft and IBM came out with
the original MSDOS and PC, they
defined an extra set of 128 charac-
ters to be used on top of the origi-
nal 128 ASCII ones (it was known as
Extended ASCII). They decided to
use a mixture of characters with
diacritical marks (accents and the
like), line-drawing characters,
Greek alphabet characters and so
on. As it happened, this was fine for
the USA, but the rest of the world
wanted extra characters to fill out
their alphabets: other characters,
characters with special diacritical
marks and so on. I well remember
the days in England when your IBM
PC displayed the pound sterling
character (£) but it was printed on
your Epson dot matrix printer as
something else entirely (IBM and
Epson disagreeing on the defini-
tion of the Extended character
set), there used to be whole maga-
zine articles on how to get things to
print properly.

With MS-DOS 3.0, Microsoft
came out with COUNTRY.SYS and
DISPLAY.SYS and code pages and
special display font files and sud-
denly other countries’ citizens
could see their own alphabet on
the PC screen. Each of these code
pages (or character sets) used the
same ASCII characters for the first
128 encodings, but the second 128
encodings were country-specific.
These different character sets
were distinguished by a numeric
value, the code page number. For
example the original PC code page
was number 437, the one used in
most of Western Europe was 850,
Slavic countries used 852 (it has all
those amazing accents that enable
you to type the name of the
composer of the New World
Symphony).

Windows uses two character
sets: the ANSI character set (gener-
ally 1252 in the West) and the OEM
character set (this depends on
how your system was set up, mine
for instance is 437 at home, but 850

10 The Delphi Magazine Issue 27

at work). The OEM character set is
used for DOS programs, console
programs, file names and the like
whereas the ANSI character set is
used everywhere else. I’m typing
this article with Microsoft Word on
Windows 95 and it’s using the ANSI
character set.

You can experiment with the
differences in the two character
sets from your keyboard if you like.
Start NotePad as one window and
an MSDOS prompt in another. We’ll
use the Alt key with the numeric
keypad.

In NotePad, press the Alt key
and, holding it down, type 0156.
Release the Alt key. Now, on my
system (code page 1252), that’ll
give you the œ ligature. Switch to
the MSDOS window and do the
same at the DOS prompt. For me
(code page 437), I get the pound
sterling sign (£). Experiment a
little. If you use values less than 128
you tend to get the same character
displayed in both windows (try
and keep away from Alt+000 to
Alt+031, though), but if you use
values above 128 you will not get
the same character. For me,
Alt+0233 produces either é in
Windows or theta in DOS (é in code
pages 437 and 850 is Alt+0130).

To Face The Truth
So, having made this little diver-
sion into code pages we see that
sorting text strings can be
somewhat complicated.

Before we can compare two
strings the first thing we need to
know is which code page they’re
encoded with. We cannot compare
two strings that are encoded
differently: one of them must be
converted into the other’s code
page first. Mind you, generally the
strings we compare are always in
the same code page, and so we
shall leave the subject of code page
conversion to another day.

Next we need to know if we are
doing a case-insensitive compari-
son or a case-sensitive one. In the
former case, lowercase letters are
deemed to compare equal to their
uppercase equivalents, in the
latter the lowercase letters are
deemed (usually) to compare
greater than uppercase.

Now we can compare the strings.
But how? Since é is supposed to be
between e and f, and yet the ASCII
values of the three characters are
233, 101 and 102 respectively (at
least in code page 1252), we obvi-
ously cannot use the encoding
value as a basis for comparison. In
our example we need the result
101, 233, 102, but if we compare
ASCII values we’ll get 101, 102, 233.
And this, by the way, is the prob-
lem with Delphi’s > and < string
operators and the CompareStr rou-
tine: they treat characters as their
byte equivalents.

This is one place where the Ansi-
CompareStr routine comes into its
own. It uses the Windows Compar-
eString routine which knows how
to compare two text strings ‘pro-
perly.’ Its downfall is that it uses
the ANSI code page only, and thus
depends on how the system has
been set up. The CompareString
that my Windows 95 installs will be
different to one in the Czech
Republic, for example.

What we need to do is take con-
trol of our string comparisons. We
need to provide another encoding
which says, in effect, the character
101 (e) must be less than the char-
acter 233 (é) which, in turn must be
less than the character 102 (f).
Let’s call this encoding the sort
order or collation.

What we do is to assign a sort
value to each character using an
increasing sequence and then all
we need to do is sort these sort
values. So, for example, if the letter
e was assigned the sort value 42,
we could assign é the sort value 43
and f the sort value 44. Bingo, e
compares less than é which
compares less than f, just because
41 < 42 < 43.

Metamorphosis
This, then is our plan. To compare
two text strings, we convert each
string of characters to a string of
sort values and then compare
these two converted strings. For
simplicity sake, the conversion
process uses an array of sort
values, so we could write:

for I := 1 to length(S) do

ConvertedS[I] := SortValue[S[I]];

where S is the original string, Con-
vertedS is the string of sort values,
and SortValue is the collation
array. This can be coded in assem-
bly language very efficiently. Of
course, an alternative would be to
convert each character in turn,
one from each string, and then
compare the sort values until you
reach an unequal comparison.

In fact, if you think about it, we
could also provide a collation
array for case-insensitive compari-
sons: just give the lowercase let-
ters the same sort value as the
uppercase ones. Suddenly we have
an extremely flexible and extensi-
ble method of comparing strings.
Instead of having a bunch of flags
or different routines (for example,
do case insensitive comparison?
Set flag X to True. Use ASCII value
comparison? Use CompareStr) we
can supply a collation array to a
single routine and away we go.

At this point we could design the
comparison routine to look like:

function CompareStrings(

S1 : string; S2 : string;

Collation : TCollation) : integer;

where TCollation is an appropriate
type for the array of sort values,
and the return value is less than
zero if S1 compares less than S2,
zero if they compare equal, greater
than zero otherwise. The actual
instances of TCollation that you
use might come from a file or files,
from resources or whatever. Do
note however that two strings that
compare equal are not necessarily
the same string: in a case-
insensitive comparison ‘ABC’ com-
pares equal to ‘abc’ for example,
although they obviously are not
the same string at all.

Yesterday, When I Was Mad
Great! At this point you might be
reaching for the magazine diskette
to unzip the source code and start
patching it into your latest applica-
tion. But, stay awhile, this article is
not yet over.

I warned you before that the sub-
ject of string comparison just pres-
ents more layers the more you pick
at it. Those of you who are inter-
ested in type (and by that I mean

12 The Delphi Magazine Issue 27

the form of the letters you see on a
page, the font) may have noticed a
throwaway reference above to a
ligature. I you aren’t interested in
type you might have glossed over
the word. So, what’s a ligature and
what does it have to do with us?

My youngest cat’s name is
Aristæus, ‘Arry for short. The æ
character pair in his name is a liga-
ture: a letter formed by squeezing
two or more ‘standard’ letters
together. The other standard liga-
ture is the œpair, however in some
specialist fonts you will also find
the ligatures fi, fl, ffi, ff and maybe
others. These specialist typo-
graphical ligatures are not of con-
cern to us here since they are not
characters in standard code pages.

Back to comparing strings: so
what’s so special about ligatures?
Well, does Aristæus compare
equal to Aristaeus? Answer: um,
yes, I suppose it does. If we were in
Germany, would straße (a street)
compare equal to strasse? Er, well,
yes, the sharp-s character is equal
to a double s. Are you getting the
gist of this particular problem?
Certain single characters must be
counted equal (to be strict, com-
pared equal) to a character pair. In
other words we must make the æ
character have the same sort value
as the ae character pair, or the ß
character have the same sort value
as the ss character pair.

The way we do this is to convert
the single character into its equiva-
lent character pair before perform-
ing the comparison. As an aside,
note that this means a string of
characters may grow in size when
converted to a string of sort values.

Are we finished yet? Ha, no, of
course not. Let’s visit Spain briefly.
There the character pair ll is

counted as a special character that
sorts between l and m. Yes, a pair
of ls is seen as a single character
with a y-type sound and it comes
after l and before m. In Spanish
dictionaries, llaga (an ulcer, what
we’re getting here!) will appear
after all words beginning with a
single l (eg, luna, the moon, the
root of lunacy) and before all
words beginning with m (eg,
macaco, a monkey; no comment).
In this case we need to convert the
ll pair into a single character, the
opposite of the ligature case.

It’s Alright
After identifying these two slightly
different problems we finally come
to the end of our particular quest.
We need to enhance our posited
TCollation type to include this
“1-for-2” and “2-for-1” information
as well. We need to be able to read
a collation from a file or, even
better, a stream at run-time (enter-
ing a collation to be compiled into
the EXE is not my idea of fun).

Of course, what I am trying to get
at here is that ideally a TCollation
class needs to be defined, not the
simple record structure which we
posited before. Its methods will
read in the collation data from a
stream, compare two strings,
convert a string to its sort value,
and so on.

I won’t reprint the source code
here; it’s all pretty simple and, in
doing so, this already long article
won’t be particularly enhanced.
Go, look at the source.

After all, my point in writing this
article is to make you realize that
there is more to comparing strings
than using the Delphi string opera-
tors. If, every time you compare
two strings, a little voice in your

head starts squeaking “code page,”
“collation,” “ligature,” then this
article will have served its pur-
pose. Learn your lesson from me:
this code was written to be part of
TurboPower’s FlashFiler product
after some of our European cus-
tomers kindly pointed out that
their string keys were not being
indexed properly.

Opportunities
The code that accompanies this
article is for Delphi 2 and 3 only. It
defines a class that has method to
compare two strings, a method to
convert a string to its collation
equivalent (called a sort string in
the code) and so on. There is also a
TStringList look-alike class that
sorts its strings according to a
collation you supply. And to help
out there are several files defining
different collations for different
code pages, for case-insensitivity,
for different countries and so on.
Please see the COLLFILE.TXT file
for a description of the different
collations available.

Julian Bucknall is Director of Tools
Development at TurboPower
Software. He can be reached by
email at julianb@turbopower.
com or on CompuServe at
100116,1572
Copyright © 1997 Julian Bucknall

	A Different Point Of View
	To Step Aside
	To Face The Truth
	Metamorphosis
	Yesterday, When I Was Mad
	It’s Alright
	Opportunities

